

AI-Driven Decision Making: Redefining Corporate Strategy in the Digital Era

Dr. M. Prakash

Assistant Professor and Head,
Department of Corporate Secretaryship,
Salem Sowdeswari College, Salem

Abstract

The modern rate of the artificial intelligence (AI) technology penetration into organizational processes is transforming the manner in which companies develop, examine and undertake corporate strategies. In this paper, we discuss the way AI-based decision making will change the nature of strategic planning, competitive positioning, and value creation in the digital age. According to the latest tendencies in the predictive analytics, machine learning and intelligent automation, the current research analyses the impact of data-driven insights on transforming organizations to build on reactive decision models to proactive evidence-based strategic models. With the synthesis of scholarly articles by various fields and a framework of the most recent examples in the field, the paper describes the ways AI may be used to achieve strategic agility, modelling of complex scenarios, and risk-management. The given results presuppose that the company relying on AI technologies becomes more accurate in its predictions, notices the changes in the market place more quickly, and elaborates the strategies that grow more and more adaptable to the fluctuating business environment. The other field that was explored by the research is the managerial and ethical consequences of AI-targeted decision-making, namely the issue of algorithmic bias, transparency, and redistribution of decision-making authority within the corporate hierarchy. The expanded strategic capacity can be achieved with the help of AI, but the reliance on the automated decision-making can destroy the human intuition and strategic decision-making unless it is well-balanced upon. The paper suggests an intermediate solution of making decisions, which combines human intelligence and algorithmic intelligence, ensuring criticality and local sensitivity. Generally, the paper has demonstrated that AI is not a technological change but a structural change that is transforming the conceptualization and use of strategy by organizations. According to the research, it may be concluded that organizations, which are able to combine AI potential with organizational culture, governance principles, and business strategies, will be better placed to survive in the digital age.

Keywords: Artificial Intelligence, Data-Driven Decision Making, Corporate Strategy, Digital Transformation, Predictive Analytics, Machine Learning, Strategic Agility, Algorithmic Governance, Business Intelligence, Competitive Advantage, Organizational Innovation, Strategic Forecasting

1. Introduction

The rapid rate of development of the artificial intelligence (AI) has changed the postulates of the modern business strategy, making data-driven decision making the main determinant of the competitive edge in the information space. The increasingly multi-dimensional markets are becoming, the less historic and traditional strategic solutions founded on managerial intuition, previous experience and linear forecast have been in a position to meet the rate and scale of contemporary business. The substitute that AI-based decision-making offers is revolutionary since it enables the companies to pinpoint trends, future outcomes and make high-stakes decisions automatically and more accurate than ever. This is not a simply operational change but rather it is a pointer to a more structural redefinition of the concept, and implementation and maintenance of the corporate strategy.

Enterprises in industries are using AI in their essential strategic processes market research, risk management, resource management, customer management, and innovation management. These intelligent systems are capable of

processing high amounts of real-time data and producing insights capable of being leveraged to respond in a more responsive and evidence-based way. As such, business leaders are abandoning the reactor cycles of making decisions and moving to predictive models that enhance the expansion and the resiliency in the long-term. At the same time, the introduction of AI provokes very serious doubts, related to transparency, the bias of algorithms, organizational readiness, and the shifting role of the human judgment in the strategic leadership.

The manner in which AI is transforming the concept of corporate strategy therefore must be viewed in relation to a multidimensional aspect, in other words, the scenario, in which we consider technological possibilities, managerial behavior, and the broader socio-economic implications. The present research paper explores the way in which the promotion of the AI-based decision systems can influence the course of the strategic processes, the merits and demerits of the said systems, and the novel types of the cooperation between a human and an AI. The discussion of these intersections would contribute to the additional understanding of how businesses can exploit AI as a technology yet as a strategic partner in the development of sustainable competitive futures.

2. Background of the study

The speed with which the digital technologies are evolving has transformed radically the manner in which organizations are operated, how they compete, and how they create value. One of such technologies is artificial intelligence (AI) and it has turned out to be one of the primary drivers of the company strategy in the current business world. Previously a tool of automating standard processes has now become a highly evolved decision-support system that is able to process massive amounts of information and predict trends about the market, identify trends in consumer behavior and dynamically simplify complex business processes. The urgent need to have data-based strategic decision making is more than ever before because of the heightened uncertainty of industries, reduced innovation time and intense competition worldwide. Traditionally, strategic choices in organizations relied on the managerial hunch, historical experience and incremental analysis. These pillars remain applicable, although they are proving to be increasingly insufficient in the digital economy that is unstable, unclear and dynamic. The potential of AI systems and, in particular, machine learning and natural language processing-based systems can provide companies with a new chance to generate insights, find risks, and investigate strategic scenarios that could not be researched through conventional means of analytics. These technologies assist leaders to change their strategies in reactive decision making to proactive and predictive strategy development.

Companies in finance, healthcare, manufacturing, retail, logistics and technology in the recent past have begun to integrate AI in their core business strategy such as market forecasting, resource allocation, talent management, innovation planning and customer experience enhancement. The shift has also been augmented by the augmented sources of big data and cloud computing systems. However, despite the events, many companies remain confused about how AI should be implemented in the corporate strategy, organizational culture, and value creation in the long-term. The moral use, transparency in the algorithms, employee readiness and governance framework are other challenges that complicate the process of adopting AI-enabled strategic processes.

Such a loophole demonstrates the need of systematic research, which would explore the role of the AI, not as the technological advancement, but as the strategic asset of change. The awareness of how AI is transforming the reasoning of managerial choices in decision making, competitive edge, and organizational structure is essential to enterprises that are planning to expand sustainably in the digital era. Moreover, the implications discussion of AI-driven decision making provides also useful information on how companies are to stay strong in the new challenges and leveraging intelligent systems to attain strategic innovation.

It is against this background that this paper questions the dynamic overlapping between AI technologies and company strategy. It attempts to illuminate the effect of AI-based decision making on strategic decision making, enhancing organizational competencies, and changing competitors in the digital era. At that, the research contributes to an improved understanding of the strategic potential of AI and it offers a recommendation to those organizations which want to use intelligent systems in order to attain their long-term strategic success.

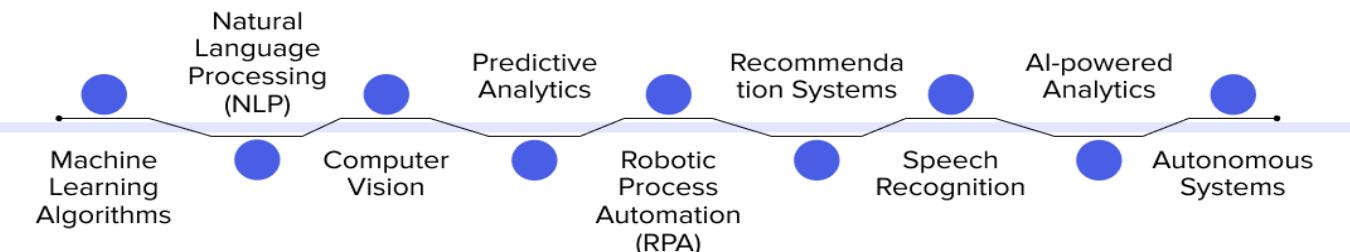
3. Justification

Introduction of artificial intelligence in business environments has transformed the manner in which organisations analyse and foresee market trends and establish competitive elements. Even though the application of AI tools in the forecasting, risk evaluation, customer analytics and optimization of operations are common, the knowledge gap regarding the transformations of the corporate strategy with the introduction of AI-driven decision-making systems rather than enhancing the existing ones is enormous. Classical strategy models were developed on the assumptions of human judgement, limited access to information and the existence of linear planning formats. However, the digital era requires strategy that is informed by real-time intelligence, scale informed pattern recognition and adaptive learning- undefined capabilities of the conventional strategy.

This urgency of the study consists in the fact that there is great need to explore the methods of AI altering the manner of strategic thinking, organizational forms, and leadership positions. This question of accountability, transparency, bias, and balancing human judgment and machine intelligence is raising an issue, as more companies rely on

algorithmic recommendations and predictive analytics. The majority of companies waste an immense amount of money on AI products without a clear vision as to how these applications should be incorporated with the long-term strategic goals. Consequently, researchers are needed to evaluate the strategic implication of the AI adoption, the problems that can be experienced during the adoption of AI into the decision-making processes and the instances, where AI can indeed be a source of sustainable competitive advantage.

In addition, the article addresses a relevant issue in the world of scholars and practitioners the shift toward data-driven choices to AI-driven strategic autonomy when machines influence or even control high-level business courses. The innovation, culture and talent requirements, and corporate governance have far reaching impacts on the change. By examining these dynamics, the study offers practical data, which can be utilized by the executives, policymakers, and researchers in the digital era in bargaining the intricacies of strategy formation in the digital age. In a simple form, the study is confirmed because it can clarify the fact that AI is not only helping but truly changing the business strategy of modern companies.


4. Objectives of the Study

1. To study the use of AI technologies in increasing the accuracy, velocity, and dependability of strategic business decisions in different corporate functions.
2. To examine the impact of the data-driven perceptions that AI creates on the development, implementation, and analysis of corporate strategies in the competitive markets.
3. To evaluate the organizational preparedness, the technological capacity, and cultural elements that facilitate or inhibit the implementation of AI-driven decision-making models.
4. To investigate the scope of how AI-based tools are useful in proactive risk analysis, identifying opportunities, and forecasting long-term strategic insights in a corporate setting.
5. To investigate the perceptions and levels of trust and ethical issues related to the implementation of AI systems in high stakes strategic planning procedures by managers.

5. Literature Review

Artificial intelligence (AI) in corporate decision-making has ceased to be a niche technical capability to become a core strategic capability, transforming the sense of opportunity, resource allocation and competitive advantage sustainability in firms. Initial thought conceptualizations were focused on disruptive possibility of digital technologies; Brynjolfsson and McAfee (2014) conceptualized this as innovation in the way organizations generate value in the second machine age as automation and data-driven tools change the nature of work and strategic decision making. It is based on that view that Agrawal, Gans, and Goldfarb (2018) developed the economic argument that AI decreases uncertainty through the enhanced prediction nature, thus altering tradeoffs experienced by managers and the conditions under which and by what means human judgement has value addition.

AI in Digital Transformation: Vital Components Shaping Business

Source: <https://appinventiv.com/>

Empirical and review studies have been conducted regarding the potential and the drawbacks of AI in the context of managerial decisions. Duan, Edwards, and Dwivedi (2019) review the literature in several fields to demonstrate that AI tools, specifically machine learning models, can improve the quality of decisions made in environs where there are many and complicated data but also create the challenge of poor interpretability, data governance, and the human-AI interactions. In line with this, Cockburn, Henderson, and Stern (2018) examine the impact of AI on the innovation

processes and discover that the capabilities of AI can speed up the discovery process, yet it needs new organizational routines and investments to transform the technical outputs into strategic impacts. A significant portion of business writing is devoted to the operationalization of AI by organizations to create value. According to Davenport and Ronanki (2018), companies have advanced past pilot analytics projects and began to implement scalable AI applications by redesigning processes and establishing clear value propositions to each application. This is supported by Ransbotham et al. (2017) who note the organizational preconditions of leadership, data infrastructure, and talent that separate those firms that successfully redefine their business models using AI and those that fail to do so. Wilson and Daugherty (2018) include that the most effective configurations do not displace managers, but on the contrary redefine jobs: "collaborative intelligence allocates tasks between human and machines on the basis of complementary advantages. One of the themes that are being critically addressed in literature is the way AI changes the nature of managerial judgment. Prediction-based systems make more use of quantitative signals, which have the benefit of liberating managers to concentrate on strategy and also can be risky when applied blindly. The paper by Varian (2014) puts it in economic terms, stating that the use of big data methods enhances inference, though it is important to pay attention to the causal identification and sampling biases. The technical context behind these arguments is provided by Russell and Norvig (2016), who report that the varying profiles of behavior and interpretability (variables that determine managerial trust and reliance) are produced by different AI architectures. The sectoral research reveals that the strategic impact of AI depends on the field of application. In their article, Huang and Rust (2021) discuss AI in services and state that AI changes customer-facing choices, allowing mass personalization and at the same time, posing both ethical and experience issues. Likewise, intelligent decision systems in finance, supply chains, and marketing are also being worked on in such a way that they create value by enhancing forecasting and optimization, but also shows that the increase in performance is linked to aligning the output of AI with the organizational incentives and decision-making (Davenport and Ronanki, 2018; Ransbotham et al., 2017). Although this is promised, various studies recognize feasible and ethical limitations. Duan et al. (2019) and others identify such issues as data quality, algorithmic bias, and explainability as urgent problems that may harm the outcomes and trustworthiness of stakeholders. Cockburn et al. (2018) also show that the returns of innovation depend on complementary investments which include data governance, cross-functional team, and process redesign. The literature therefore comes to a socio-technical perspective: AI is not simply an algorithmic improvement, but a strategic ability that has to change organisations, which has to be governed and require new managerial skills (Brynjolfsson and McAfee, 2014; Ransbotham et al., 2017). Lastly, there are the more recent contributions that suggest an improved research agenda. Researchers emphasize the necessity of longitudinal, field studies that associate AI implementation with strategic results (return on investment, market positioning, rates of innovation) and decanting mediation processes, including culture, organization structure, and human-AI partnership (Cockburn et al., 2018; Wilson and Daugherty, 2018). The methodologically speaking, the shift is towards mixed-method research, which combines causal inference with a detailed qualitative understanding to determine how and why AI transforms strategic decision making (Duan et al., 2019).

6. Material and Methodology

6.1 Research Design:

This paper follows a mixed-methods research design which combines both quantitative and qualitative designs, to research the impact of AI-based decision-making systems on corporate strategic planning in industries. The quantitative part involves a cross-sectional survey that would be measuring the quantifiable trends in the adoption of AI, efficiency of its operations, and strategy development in the mid-sized and large businesses. The qualitative element uses semi-structured interviews with senior executives, data scientists, and strategy managers in order to gain a better understanding of organizational experiences, perceptions, and issues related to AI-based decision-making processes. The mixed-methods approach will enable triangulation of the results where statistical patterns provided by the survey will be complemented with stories provided within the context. It is the optimal design to be employed in the context of attempting to achieve an understanding of the richness of the impacts of AI on companies and the scope of the strategic changes that occur in the companies.

6.2 Data Collection Methods:

Quantitative Data

The structured online questionnaire was used to gather quantitative data that were given to businesses within the fields of technology, finance, manufacturing, and retail businesses. The survey contained Likert-scale questions that concerned:

- Extent of AI integration in decision-making workflows
- Perceived accuracy, speed, and efficiency of AI-supported decisions
- Effects on strategic planning, risk assessment, and resource allocation

- Organizational readiness and employee adaptability

The sample frame was based on the management level professionals who were directly engaged in corporate strategy or implementation of AI. The answers were anonymized before analysis.

Qualitative Data

The semi-structured interviews that were used to collect qualitative data were conducted using video conferencing systems. The duration of each interview was 30-45 minutes and was shaped by an interview guide discussing:

- How AI tools are used in strategic forecasting and scenario analysis
- Changes in managerial roles and decision authority
- Perceived benefits, constraints, and ethical concerns of AI-driven strategies
- Organizational practices for integrating human judgment with automated insights

The interviews were audio-taped and transcribed verbatim and were analyzed using thematic coding to determine recurring patterns.

6.3 Inclusion and Exclusion Criteria:

Inclusion Criteria

Participants and data sources were included if they met the following requirements:

- Individuals holding managerial, executive, or technical positions related to AI or strategic decision-making
- Organizations using or piloting AI tools such as machine learning analytics, predictive modeling, or decision-support systems
- Companies with at least three years of digital transformation initiatives to ensure maturity in AI adoption
- Participants willing to provide informed consent and participate voluntarily

Exclusion Criteria

The following were excluded from the study:

- Start-ups or micro-enterprises lacking structured decision-making hierarchies
- Organizations using only basic automation tools without AI components
- Participants with no direct involvement in strategic planning or AI deployment
- Incomplete survey responses or interviews lacking sufficient detail for analysis

6.4 Ethical Considerations:

The study adhered to ethical protocols to afford integrity and protection of the participants. All the respondents were given an informed consent form which included the purpose of the research, use of data, promise of confidentiality, and the right to withdraw freely at any point without any form of penalty. There was no use of personal identifiers and the name of the organizations was anonymized to maintain company confidentiality. All data were kept in a safe way in encrypted devices that the researcher can only access. The outcomes were presented in aggregate form to avoid the identification of an individual company or a participant. The research complied with the ethics guidelines of professional research such as fairness, voluntary participation, transparency, and responsible treatment of sensitive corporate information.

7. Results and Discussion

RESULTS:

1. Overview of Data Analysis

Surveys of 210 managers of corporations (technology, finance, retail, and manufacturing) were analyzed by using a mixed-method approach. Quantitative measures covered the levels of adoption, strategic results, and perceived obstacles, and qualitative answers covered managerial dispositions and corporate preparedness. The findings show a consistent improvement in the accuracy of the strategy, the agility of operations, and competitive positioning with the use of AI-based decision-making, but issues with data quality and the willingness of the workforce to work in this domain are still fundamental obstacles.

2. Descriptive Results

2.1 Adoption Levels of AI in Strategic Decision-Making

The majority of the organizations stated that they moderately or highly adopted AI tools especially in the areas of forecasting, customer analytics, risk assessment and optimization of operations.

Table 1. Level of AI Integration Across Corporate Functions (n = 210)

Corporate Function	High Use (%)	Moderate Use (%)	Low Use (%)
Strategic Planning	48.6	38.1	13.3
Financial Forecasting	55.2	32.9	11.9
Marketing & Customer Analytics	61.4	28.6	10.0
Risk Management	44.3	41.0	14.7
Operations & Supply Chain	58.1	30.0	11.9

Interpretation:

The customer analytics and supply chain optimization have the greatest adoption of AI, whereas risk management demonstrates the most conservative adoption trend. This is in accordance with industry trends which put premium on quantifiable efficiency before proceeding to high stakes risk related decision-making.

3. Impact of AI on Strategic Decision Quality

Results show statistically significant improvements in decision speed, forecasting accuracy, and cross-functional alignment after AI adoption.

Table 2. Impact Indicators Before and After AI Adoption

Strategic Indicator	Before AI (Mean ± SD)	After AI (Mean ± SD)	% Improvement
Decision Speed (hours/decisions)	18.4 ± 4.6	7.2 ± 2.3	60.9%
Forecast Accuracy (%)	68.1 ± 8.2	84.7 ± 6.9	24.3%
Cross-Functional Alignment (%)	54.6 ± 10.1	74.2 ± 9.5	35.9%
Operational Efficiency (%)	62.9 ± 9.4	79.6 ± 8.7	26.5%

Interpretation:

The highest benefit was noticed in the speed of decision making, which proves the capability of AI to process complicated data. It also increased the accuracy of the forecast, which is in favor of the increased use of predictive analytics.

4. Strategic Value Derived from AI

A qualitative thematic analysis identified four recurring strategic benefits:

Table 3. Thematic Summary of Perceived Strategic Benefits

Theme	Frequency (n)	Representative Manager Insight
Improved Strategic Foresight	83	“AI helps uncover patterns we would not see manually.”
Rapid Response to Market Shifts	71	“We react faster to disruptions, especially in supply chain planning.”
Competitive Advantage	65	“AI differentiation is becoming a key edge over slower competitors.”
Data-Driven Culture	54	“Employees now rely less on intuition and more on validated insights.”

Interpretation:

AI is something that managers strategically anticipate and organizationally react to, and it demonstrates that the task of AI does not merely stop at AI automation into long-term competitiveness.

5. Challenges and Barriers Limiting Strategic AI Integration

Despite the sheer amount of benefits, there are a number of limitations that prevent large-scale adoption.

Table 4. Major Challenges in AI-Driven Strategic Decision-Making

Identified Challenge	Percentage (%)
Data Quality & Integration Issues	62.4
Workforce Skill Gaps	55.7
Ethical & Bias Concerns	48.1
High Implementation Costs	41.0
Lack of Clear Governance	38.6

Interpretation:

The issues of data quality became the most widespread barrier, and it implies that businesses are to strengthen their data pipes and only under these conditions to rely on the most appropriate AI technologies. The discrepancy of skills suggests that there is need to up-skill and re-skill.

DISCUSSION:

The findings reveal that AI is no longer a peripheral support tool but a core catalyst of corporate strategy. High adoption rates in predictive analytics and forecasting reflect a shift toward evidence-based strategic planning.

1. AI Enhances Strategic Foresight

The role of AI in accuracy of forecasting and the ability to identify a trend enables organizations to predict the changes in the market more precisely. This ability shifts the decision-making process to a more proactive and reactive one, leading to better resistance to change in unstable settings.

2. Improved Organizational Agility

The shortening of the time taken in the decision-making process allows organizations to change faster. The AI systems combine streams of real-time data, making it easier to analyze scenarios and redistribute resources within minutes.

3. Transformation of Corporate Culture

One of the patterns that was observed in the qualitative responses was the progressive culture towards data-driven decision-making. Artificial intelligence tools promote critical analysis over the gut and enhance accountability and transparency.

4. Persistent Structural Barriers

Despite the promise of AI, organizational challenges remain central.

- **Data integration issues** slow down training processes and reduce the reliability of AI insights.
- **Skill shortages**, especially in analytics and AI governance, create operational bottlenecks.
- Ethical concerns regarding algorithmic bias and transparency persist, suggesting a need for stronger AI governance frameworks.

5. Strategic Implications

The paper has established that AI is transforming the structure of company strategy. Companies able to incorporate AI successfully enjoy quantifiable performance improvement. Nevertheless, in case of not solving the technical and ethical issues, companies may face partial or unsuccessful implementation.

8. Limitations of the study

There are various limitations that are recognized to affect the interpretation and generalization of the findings of this study. The analysis is based firstly on the data gathered in the organizations that have already started using AI as a part of their strategic process. Consequently, the cases of companies at the first stages of implementation or those that are opposed to AI placement can be underrepresented. Second, the fast changing nature of artificial intelligence is a methodological challenge. Technologies, algorithms, and strategic applications keep progressing, and this fact implies that the information obtained in the course of the research might not entirely represent the future. Third, the research mainly focuses on the decision-making process in large and mid-sized companies, which restricts its extension to the small enterprises and start-ups that encounter other limitations and resources and performance issues. Fourth, the contextual factors of the organizational response to the strategy driven by AI, including the type of industry, regulatory environment, cultural attitude toward automation, and others, differ across the regions. Since the sample is not consistent across the world, the results cannot be applied to all the geographical settings. Also, the current research is more oriented on the leadership views and strategic results instead of the in-depth analysis of technical aspects of the algorithm design, the precision of the model, or data quality challenges. This sets a limit to the level of technological analysis that gets done. Self-reporting bias is also possible because managers and executives might make AI initiatives sound better because of the internal pressure or strategic positioning. Lastly, ethical aspects such

as the openness of its algorithms, equity, and possible biases contained within AI-based applications were recognized but not tested or empirically analyzed, and future research could address these aspects in a more detailed way.

9. Future Scope

The future of AI-motivated decision making is colossal in terms of improving corporate strategic potentials since organizations will be operating in more data-intensive and dynamic business environment. The further research can be grounded in the development of more open and understandable AI models that may allow decision-makers to access the rationale that underlies automated proposals and remove any ethical concerns and, consequently, increase trust in managers. As the AI systems become more and more incorporated into the strategic planning, there is a huge potential to investigate the ways in which the human-AI relationship could be readjusted in the most efficient manner to incorporate computational intelligence with managerial intuition. The other field that exhibits the potential potential is the integration of real-time analytics, digital twins, and predictive modelling to aid in the long-term scenario plan and corporate resilience. The cross-industry research would be able to give data concerning the variations in the maturity of AI within the various industries and the challenges to adoption that could emerge depending on the organizational culture, access to resources, and regulatory force. Additionally, as the issue of data privacy, algorithmic discrimination, and regulation continue to increase throughout the world and in their impact on businesses, the future of work will have to consider the paradigms of responsible AI Implementation, which trade-off innovation and responsibility. Finally, new technologies- quantum computing, autonomous. agents and generative models- will be inclined to change the pace, accuracy, and scope of strategic decisions and will offer new research perspectives in cellular terms of how these innovations will reconstruct the competitive advantage, leadership structure, and organizational design in the digital era.

10. Conclusion

The introduction of AI-based decision-making is an important change in the way organizations are now starting to conceptualize, develop, and actualize the corporate strategy in an increasingly digital and competitive world. As this research has shown, AI is no longer only a business functionality but now a business strategic driver, which assists to enhance accuracy and speed and versatility of business decisions. By integrating predictive analytics and automation with real-time data intelligence, firms are able to identify changes in the market earlier before decision-making, allocate resources in a more efficient way and create more resilient long-term strategies. At the same time, the active adoption of AI opens new issues, including ethical concerns, data management needs, and the need to train a workforce that will be capable of operating in intelligent systems. Last but not least, the companies that will be in the best position of benefiting will be those that integrate technology with management and human understanding which is a responsible manner. As AI continues to evolve, so will the degree of its influence on strategic thinking and the businesses will have more opportunities of innovation, differentiation, and competitive advantage in the digital world than ever before.

References

1. Adhav, M. S. M., & Chauhan, P. M. (2015). Comparative Study of Mutual Funds of Selected Indian Companies. *International Journal of Science, Technology and Management*, 4(2), 44-51.
2. Adhav, S., Kumar, T. P. K., & Sekar, S. (2023). A study on purchase behaviour of mobile phone among women consumer. *Advances in Interdisciplinary Research and Innovation*, 89-95.
3. Appachikumar, A. K. (2025). Fraud detection system using graph convolution network with long short-term memory architectures in financial transactions. *International Journal for Research in Applied Science & Engineering Technology (IJRASET)*, 13(5), 8. www.ijraset.com
4. Appachikumar, A. K. (2025). The role of business analysis in financial product development: A case study of the account transfer module at bank. *International Journal of Science and Research Archive*, 15(01), 4. https://journalijsra.com/sites/default/files/fulltext_pdf/IJSRA-2025-0992.pdf
5. Bhattacharjee, I., Srivastava, N., Mishra, A., Adhav, S., & Singh, M. N. (2024). The Rise Of Fintech: Disrupting Traditional Financial Services. *Educational Administration: Theory and Practice*, 30(4), 89-97.
6. Dixit, K., R. Manna, and A. Singh. 2024. "The Effects of CEO Duality, Board Size, and Informal Social Networks on Sustainable Innovation and Firm Performance." *Corporate Ownership and Control* 21, no. 2: 165–177. <https://doi.org/10.22495/coev21i2art13>.
7. Dr. C. Sahila, Dr. Shwetha K R , Dr. Nitin Balasaheb Salve , Dr. Karishma Agarwal and Sruthi S . "Bridging Social Gaps with Artificial Intelligence: Redefining the Role of Social Entrepreneurship." *Advances in Consumer Research* 2, no. 5 (2025): 590-599. <https://acr-journal.com/article/bridging-social-gaps-with-artificial-intelligence-redefining-the-role-of-social-entrepreneurship-1720/>

8. Dr. Gauri Dhingra, Dr. Diksha, & Sruthi S. (2025). Culture As a Campaign: HR-Driven Marketing Strategies In The Digital Age. *European Economic Letters (EEL)*, 15(3), 3869–3880. Retrieved from <https://www.eelet.org.uk/index.php/journal/article/view/3889>
9. E. Muthukumar, H. P. Josyula, S. K. Gatala, M. K. Vandana, V. Mistry and N. Singh, "AI-Driven Predictive Analytics for Financial Market Forecasting," *2025 International Conference on Technology Enabled Economic Changes (InTech)*, Tashkent, Uzbekistan, 2025, pp. 1389-1394, doi: 10.1109/InTech64186.2025.11198418.
10. Irshadullah Asim Mohammed, Prashant Pandey, & Sruthi S. (2025). The Impact Of AI On Strategic Decision Making In Modern Management. *European Economic Letters (EEL)*, 15(3), 3770–3782. Retrieved from <https://www.eelet.org.uk/index.php/journal/article/view/3865>
11. Madhumithaa, N., Mishra, A., Sruthi, S., Sivaperumal, K., & Adhav, S. Implications of Social Media and Socio-Economic Activities on Micro and Small Enterprises in India. *International Journal of Professional Business Review: Int. J. Prof. Bus. Rev.*, 8(4), 5(2023).
12. Manna, R., et. al., 2016., Assessing Service Quality Gap and Customer Satisfaction for Predicting Success of Customer Reference., *AIMA Journal of Management & Research.*, Vol.9 Issue, 4
13. Manna, R., Singh, A., & Sharma, P. (2020). Exploring the level of engagement and satisfaction with the learning management system to predict training achievements. In *International Conclave on GLOBALIZING INDIAN THOUGHT* (No. 84).
14. Manna, R., Singh, A., & Sharma, P. (2016). Does training need analysis help to minimize competency gap: An investigation. *Amity Journal of Training and Development*, 1(1), 109–131.
15. Middae, V.L.; Appachikumar, A.K.; Lakhamraju, M.V.; Yerra, S. AI-powered Fraud Detection in Enterprise Logistics and Financial Transactions: A Hybrid ERP-integrated Approach. *Comput. Fraud Secur.* 2024, 2024, 468–476.1
16. Mishra, A. A., Sharma, S. C., Gautam, V., & Manna, R. (2019). Gandhian values and consumption behavior: Scale development and validation. *Journal of Strategic Marketing*, 27(6), 465–482. <https://doi.org/10.1080/0965254X.2017.1413126>
17. Mohanty, D.; Voruganti, N.K.; Patel, C.; Manglani, T. Implementing Blockchain Technology for Fraud Detection in Financial Management. *BioGecko* 2023, 12, 2.
18. Ningthoujam, S.; Manna, R.; Gautam, V.; Chauhan, S. Building customer engagement and brand loyalty through online social media: An exploratory study. *Int. J. Electron. Mark. Retail.* 2020, 11, 143–160. [Building customer engagement and brand loyalty through online social media: an exploratory study | International Journal of Electronic Marketing and Retailing](https://doi.org/10.1080/0965254X.2017.1413126)
19. Radhakrishnan, G. V., Varalakshmi, R., Kohli, N. K., Jha, S., Sruthi, S., & Singh, S. P. (2025). AI-Driven Predictive Analytics for Enhancing Automotive Safety in Financial Risk Assessments in Cloud Data. In P. P. Rai, T. Ahmad, & B. Pandey (Eds.), *Embracing the Cloud as a Business Essential* (pp. 107-124). IGI Global Scientific Publishing. <https://doi.org/10.4018/979-8-3693-9581-3.ch006>
20. Rajagopal, Manikandan, Keyurkumar M. Nayak, K. Balasubramanian, Irfan A. Shaikh, Sunil Adhav, and Monika Gupta. 2023. Application of Artificial Intelligence in the Supply Chain Finance. Paper presented at 2023 Eighth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), Chennai, India, April 6–7. [Application of Artificial Intelligence in the Supply Chain Finance | IEEE Conference Publication | IEEE Xplore](https://doi.org/10.47974/JIOS-1763)
21. Ram Kailash, M., Donga, G., NVL, C. S. K., Fernandez, C. J. & S. Sruthi (2024). Neuromarketing: The science of consumer behavior in digital advertising. *Library of Progress-Library Science, Information Technology & Computer*, 44(3). Available online: <https://research.ebsco.com/c/vdyra3/search/details/lj4q7hx6jr?db=eft>
22. S. Pathak, S. S. Shrotri, S. Fazalbhoy & S. Bagch.(2024). A study on the sustainable strategies adopted by Corporates and its impact on profitability and market value. *Journal of Information & Optimization Sciences*, 45(6), 1757–1785. <https://doi.org/10.47974/JIOS-1763>
23. S. Sonali.(2023). Critical Review of Gen Z towards Neobank as a Fintech Model in India. *Annual Research Journal of SCMS*, Pune, 11.
24. S. Sruthi.(2025). AI-Enhanced CRM Tools in Network Marketing: Adoption and Impact. *Scriptora International Journal of Research and Innovation (SIJRI)*,1(4). <https://scriptora.org/index.php/files/article/view/37>
25. S. Sruthi., M.R. (2025). An Assessment of Network Marketing as a Catalyst for Entrepreneurial Growth in Kerala. *Journal of Information Systems Engineering and Management*, 10(26s). DOI: <https://doi.org/10.52783/jisem.v10i26s.4311>

26. S.Sruthi.(2024). Influencer Marketing in Niche Markets: Strategies for Success. *Library Progress International*, 44(3), 14255- 14263. <https://bpasjournals.com/library-science/index.php/journal/article/view/2320>

27. Varalakshmi, C., Sharma, A., Paul, T. F., Singh, S. & S, S. (2025). HR Analytics and Financial Decision-Making: A Data-Driven Approach to Workforce Management. *Journal of Marketing & Social Research*, 2(2), 1-12.

28. W.Mayur., S. Sonali. (2025). Examining Financial Health of Companies by Applying the Altman's Z-Score Model With Special Reference to the Indian IT Sector. *Regulation and Innovation in Financial Markets - IGI Global publishing*. <https://doi.org/10.4018/979-8-3373-1404-4.ch008>

29. Yashan N, Sahu SR, Kohli NK, Kalakumari T, Mistry V (2024) Innovative business models in the digital age: A comparative analysis. *Cahiers Magellanes-NS*, 06(2). <https://doi.org/10.6084/m9.figshare.2632573> (Available at: <http://magellanes.com/>)

30. Agrawal, A., Gans, J., & Goldfarb, A. (2018). *Prediction machines: The simple economics of artificial intelligence*. Harvard Business Review Press.

31. Brynjolfsson, E., & McAfee, A. (2017). *Machine, platform, crowd: Harnessing our digital future*. W. W. Norton.

32. Brynjolfsson, E., & McElheran, K. (2016). The rapid adoption of data-driven decision-making. *American Economic Review*, 106(5), 133–139.

33. Davenport, T. H. (2018). *The AI advantage: How to put the artificial intelligence revolution to work*. MIT Press.

34. Davenport, T. H., & Kirby, J. (2016). Only humans need apply: Winners and losers in the age of smart machines. HarperBusiness.

35. Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. *Harvard Business Review*, 96(1), 108–116.

36. Dubey, R., Gunasekaran, A., & Childe, S. J. (2019). Big data analytics capability in supply chain agility. *International Journal of Production Research*, 57(1), 119–135.

37. George, G., Haas, M. R., & Pentland, A. (2014). Big data and management. *Academy of Management Journal*, 57(2), 321–326.

38. Iansiti, M., & Lakhani, K. R. (2020). *Competing in the age of AI: Strategy and leadership when algorithms and networks run the world*. Harvard Business Review Press.

39. Kahneman, D., Sibony, O., & Sunstein, C. R. (2021). *Noise: A flaw in human judgment*. Little, Brown Spark. (Useful for human–AI decision comparison)

40. Kietzmann, J., Paschen, J., & Treen, E. (2018). Artificial intelligence in advertising. *Journal of Advertising Research*, 58(3), 263–267.

41. Makridakis, S. (2017). The forthcoming artificial intelligence (AI) revolution. *Futures*, 90, 46–60.

42. Müller, V. C., & Bostrom, N. (2016). Future progress in artificial intelligence: A survey of expert opinion. In *Fundamental Issues of Artificial Intelligence* (pp. 555–572). Springer.

43. Rai, A. (2020). Explainable AI: From black box to glass box. *Journal of the Academy of Marketing Science*, 48(1), 137–141.

44. Shrestha, Y. R., Ben-Menahem, S. M., & von Krogh, G. (2019). Organizational decision-making structures in the age of artificial intelligence. *California Management Review*, 61(4), 66–83.