

Gamified Learning and Cognitive Retention: A Study on Student Engagement in Virtual Classrooms

Dr. J. Lourdu Vesna

Assistant Professor

Department of Visual Communication

Mother Teresa Womens University

Abstract

The transition to virtual learning environments has enhanced the pursuit of instructional strategies that can maintain the attention of students and enhance in-depth learning. Gamified learning, where the game features of points, badges, levels, and interactive challenges are added, have become an interesting perspective when it comes to making the process more engaging. In this research, the author explore the connection between the design of gamified instructions and cognitive retention among college students attending completely online classes. A mixed-methods research design was employed to gather data on 186 undergraduates attending virtual classrooms which had applied structured layers of gamification. On the one hand, the quantitative aspects of cognitive retention were assessed by pre-tests and post-tests conducted within the scope of four-weeks instructional cycle and on the other hand the insights of qualitative nature were provided in terms of student reflections and focus groups. The discussion found that the students who were exposed to gamified learning had a much better retention score than appearance in non-gamified control sections. Respondents also said that game parameters improved their desire to repeat learning activities, motivated them to stay longer in their engagement and alleviated the feeling of loneliness that is usually experienced in online learning. Qualitative data showed that narrative-based difficulties, as well as mechanisms of immediate feedback, had an especially significant role in keeping attention and making students establish more robust memory links. Nevertheless, the research also established that some learners were at times anxious because of poorly designed competitive aspects, and balanced and inclusive gamification approaches should be considered. On the whole, the findings reveal that carefully created gamified learning activities may facilitate cognitive retention through the engagement of active learning and facilitation of repetitive course interaction. The research paper is relevant to the existing arguments on effective virtual pedagogies and will provide useful suggestions to teachers aiming at incorporating gamification into online learning. It is recommended that future research focuses on long-term effects and investigates how individual learner preferences can be used to develop the efficacy of gamified environments.

Keywords: Gamified learning, Cognitive retention, Student engagement, Virtual classrooms, Online education, Game-based elements, Motivation, Interactive learning, Digital pedagogy, Learning analytics

1. Introduction

The blistering growth of the virtual learning space has transformed the interaction patterns between students and the academic matter, but the maintenance of the meaningful involvement in the virtual reality is a constant issue. However, with virtual platforms, unlike in a conventional classroom, there are usually no social cues, immediacy, and structured interactions that inherently compel people to participate. The outcome is that various students lack motivation, focus, and memory of the instructional content. To address these issues, teachers and creators have resorted to gamification, which is an educational method that replaces elements of the game, including points, rewards, challenges, and interactive feedback, with academic content. The concept of gamified learning has attracted a lot of attention due to its promise of motivating students and encouraging involvement. Gamification can make virtual lessons more engaging and personally appealing by adding the features that would promote autonomy, rivalry, and tracking of progress. Nevertheless, although the interest in gamified strategies is still increasing, more insight into the ways that these features affect cognitive processes, especially long-term retention is required. Numerous

studies have been done on motivation or user satisfaction, but few of them have already tested whether game-based design can indeed enhance the mental encoding and recalling of information with time. This research study attempts to fill such a gap by exploring the connection between gamified learning tools and cognitive retention in virtual classrooms. It discusses the role of particular game mechanics in the process of online teaching in terms of student engagement, attention, and their ability to consolidate memories. Through the study of student outcomes and experiences, the study will identify the answer to the question regarding whether gamification can become something more than merely a new trend and become a trusted tool in enhancing the academic persistence and understanding. The results can be useful in the work of educators, curriculum developers, and institutions that want to adopt effective techniques of enhancing the virtual learning environments and make them more interactive, cognitively supportive, and conducive to long-lasting academic achievement.

2. Background of the study

The emergence of digital education has transformed the learning process between the learners and the teacher as well as the other learners. Virtual classrooms which are promoted by learning management systems, video-conferencing tools, and interactive applications are flexible and accessible to a wide audience, but come with enduring disadvantages: diminished face-to-face indicators, differentiation in student motivation, and increased chances of distraction. Teachers and schools are therefore testing out teaching plans that are not only effective in passing on knowledge to students but also effective in maintaining attention and other types of long-term mastery. Gamified learning is one of the potential solutions, and it is the process of learning that incorporates the elements of a game (points, levels, feedback loops, challenges, etc.) to be better and more goal-oriented.

Gamification is intended to utilize both intrinsic and extrinsic incentives: it provides both obvious short-term objectives and immediate feedback (which facilitates working memory and encoding) and creates progress stories that attract further engagement. Engagement has long been associated with improved learning in the traditional classroom context; in online courses, engagement has to be designed and not presumed. Initial research indicates that the gamified interventions have the potential to facilitate greater participation in online courses, a high completion rate, and patient satisfaction.

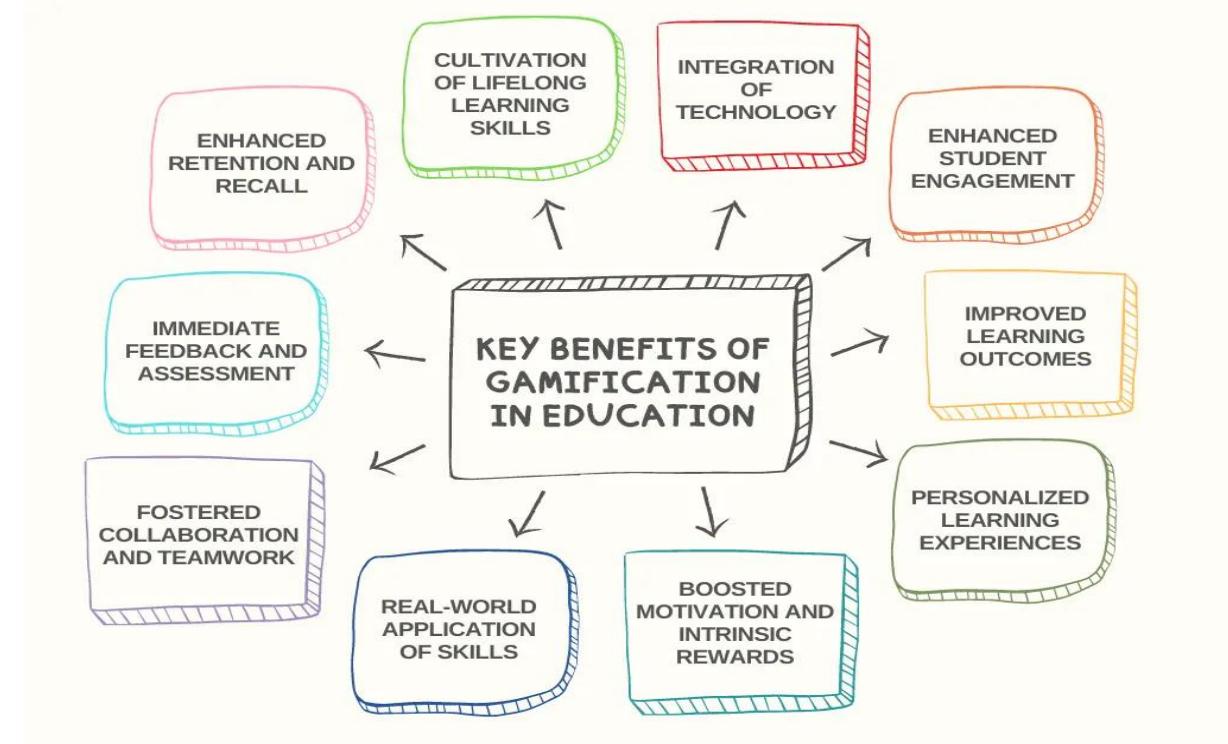
The retention process is cognitively based and it relies on various variables such as the quality of the instructional design, frequency and timing of the retrieval practice, and the cognitive load imposed by the learning activities. Well designed gamified mechanisms can decrease perceived effort and offer spacing, contextualized practice, however when poorly designed they may add unnecessary aspects that distract on essential content. The literature thus demonstrates contradictory outcomes: certain studies indicate significant increase in retention with well-substituted gamification, and other studies indicate momentary increases in enthusiasm without significant increases in long-term learning. Importantly, it is hard to make sweeping conclusions since the study design, the nature of gamification applied, the subject matter, and intervals of measurements vary across the studies.

The gap discussed in this study involves a specific area of virtual classroom setting and quantifies immediate and delayed cognitive retention and behavioural and affective engagement. The study will help to understand which aspects of gamification (e.g., adaptive challenges, formative feedback, narrative framing) most consistently lead to retention, and in what student profiles they are most effective, by contrasting structured gamified modules with such modules in control, where no gamification occurs. It is expected to generate practical advice to instructors who need to be able to provide the equilibrium between motivation tactics and evidence-based practices that can sustain learning in remote and blended learning conditions.

3. Justification

The recent growth of virtual learning systems has changed the way students engage with academic content, but the issues of persistent engagement and long-term memory still make them ineffective. Conventional online learning is usually not interactive, motivational, and emotionally arousing required to facilitate more intensive learning. Consequently, most learners develop a lack of attention, less engagement, and less strong understanding of main concepts. These problems have been particularly noticeable due to the rampant introduction of remote and blended learning models, and it is imperative to consider some alternative instructional strategies that could enhance student engagement and the learning outcome. Gamification has turned into a new trend that promises several features including rewards, challenges, tracking of progress, and collaborative activity that resembles the motivational framework of the games. Although researchers have conducted research on gamification in the physical classroom, there is limited research on the effects of gamification in virtual classrooms where, the isolations and lack of involvement among learners are more common. Moreover, the literature that already exists tends to focus on short-term motivation as opposed to more profound mental mechanisms that define the ability of students to memorize what they achieve and to put it into practical use. Conducting this study is justified by the fact that it fills a gap in the overall lack of knowledge about the effects of gamified learning on levels of engagement, and cognitive retention in

completely online environments. The research helps to get a valuable understanding of whether the disengagement typical of virtual classrooms can be overcome with the help of gamification by analyzing the behavioural participation, emotional engagement, and transfer and recall of knowledge of students in virtual learning. The results can inform the educators, instructional designers and academic institutions in the need of evidence-based strategies in order to enhance the quality of online education. Finally, the research can help to create more interactive, effective, and student-oriented digital learning experiences.


4. Objectives of the Study

1. To investigate how the gamified learning features, namely the points, badges, leaderboard, and challenges affect the degree of engagement of students in virtual classroom environments.
2. To determine how much gamified instruction strategies can be used to help students develop short-term and long-term cognitive retention, as opposed to the conventional online learning approaches.
3. To discover which specific gamification elements positively contribute best to the motivation of students, their engagement and attention retention during virtual classes.
4. To investigate the correlation between the patterns of student engagement and their cognitive retention results in the presence of gamified learning activities.
5. To assess the perception of students towards gamified virtual learning environments mainly on the usability, enjoyment and the perceived effects their learning performance.

5. Literature Review

Introduction

The concept of gamification, which involves the use of game in non-gaming situations, has been increasingly implemented in education in order to encourage learning and achieve behavioural and cognitive results (Deterding et al., 2011). Gamified interventions are suggested in virtual classrooms where attention maintenance and encouraging long-term learning are the most challenging tasks to accomplish (Hamari, Koivisto, and Sarsa, 2014). The literature review is a synthesis of empirical and theoretical studies regarding gamified learning, cognitive retention processes and student engagement in the virtual learning environment to understand what is known and what is not known.

Source: <https://www.jellyfishtechnologies.com/>

Gamified Learning: Definitions and Empirical Evidence

The earlier attempts at definition contextualise gamification as the intentional application of game design mechanics within non-games, to affect motivation and behaviour such as points, badges, leaderboards, challenges, and others (Deterding et al., 2011). Kapp (2012) applied this concept to the learning contexts with the argument that the gamified mechanics are to be aligned with the instructional objectives to bring about measurable learning outcomes. Empirical research evidence is inconclusive yet tends to be positive: Dominguez et al. (2013) described the improved course

performance and increased participation with the help of a gamified grading system in higher education; a meta-analysis by Hamari et al. (2014) also reported overall positive gamification effects on engagement and learning-related outcomes, although the effect sizes were diverse depending on the context and design.

Meta-analytic reviews draw a line between structural components of the game (points, leaderboards) and meaningful components (narrative, challenge, feedback) of the game - mechanically aligned systems have been found to maintain engagement longer than those based on superficial rewards systems (Sailer et al., 2017; Hamari et al., 2014). Similarly, Wouters et al. (2013) also discovered that effective serious games yield higher learning outcomes compared to traditional teaching especially when they include problem-solving and active experimentation.

Cognitive Retention: Mechanisms Relevant to Gamified Instruction

Cognitive retention is the ability of the information to be long-term and retrievable. The experimental cognitive psychology points out various mechanisms which are applicable to gamified instruction. The effect of retrieval practice (testing effect) is very strong in promoting long-term retention compared to passive review (Roediger and Karpicke, 2006). Distributed retrieval and spaced practice are equally efficient (Cepeda et al., 2006). According to the theory of multimedia learning, instructional tools that combine verbal and visual combination of information in a manner that balances cognitive load and induces meaningful processing enhance retention (Mayer, 2009).

The following mechanisms can be supported with the help of game-based designs: immediate feedback and repeated testing with low stakes (quizzes, challenges) serve as retrieval practice; adaptive difficulty and levelling can apply spacing and interleaving; narrative and meaningful context allow learners to organize and elaborate content (Plass, Homer, and Hayward, 2015). The meta-analysis of training based on simulation by Sitzmann (2011) depicted positive results on declarative and procedural knowledge indicating immersive and interactive characteristics as a contributor to long-term learning.

Student Engagement in Virtual Classrooms

Online learning is multidimensional (behavioural (participation), emotional (interest), and cognitive (investment in learning)) and a good predictor of retention and achievement (Fredricks, Blundenfeld, and Paris, 2004). Reports regarding the context of the Internet recognize distinct obstacles: low social presence, distracter, and decreased immediate feedback (Martin and Bolliger, 2018). The studies have shown that engagement is supported through interactive and socially rich features (peer collaboration, instructor presence) (Dixson, 2015). Gamification has been found to have a positive effect on behavioural engagement (e.g. more discussion posts, doing more assignments) in the virtual classroom literature, but the impact on deep cognitive engagement is more varied. As an example, Dominguez et al. (2013) and Papastergiou (2009) found a higher level of participation and motivation but it varied whether higher participation led to higher-order learning and retention, depending on the tasks and correspondence between the game elements and the learning objectives (Sailer et al., 2017).

Theoretical Frameworks Linking Gamification, Engagement, and Retention

The self-determination theory (SDT) can also be used as a helpful concept: intrinsic motivation is driven by gamified elements that promote autonomy, competence, and relatedness, and which predict long-term engagement and increased learning (Deci and Ryan, 2000; Ryan and Deci, 2020). Cognitive load theory warns against unwanted distractions created by extraneous features of the game when construction of the schema is intended, unless those distractions are purposely controlled by the design (Sweller, 2011). Online learning focuses on transactional distance theory which emphasizes the importance of instructional communication and framework; a properly created gamification may help decrease the perceived distance through the following factors: leveraging immediacy and feedback (Moore, 1993). Integrated theoretical models assume that gamification has implications on engagement (behavioral and emotional) that mediate on the impact on cognitive (attention, encoding) and finally on retention. Empirical mediation studies remain scarce but imply that motivation and engagement partially mediate the learning in gamified environments (Sailer et al., 2017).

6. Material and Methodology

6.1 Research Design

The research design used in the study was a quantitative quasi-experimental research design because it tested the effects of gamified learning tools on cognitive retention of students in a virtual classroom setting. Two groups were created, one being an experimental group who were given gamified instructional modules and the other being a control group where they were given the same content via non-gamified content delivery. The design could compare between groups and still have ecological validity in an authentic online learning environment. Administration of pre-tests and post-tests was done to assess the change in knowledge retention and engagement metrics were gathered at the same time, on the learning platform.

6.2 Data Collection Methods

The instruments used to collect data were a set of standardized cognitive assessment tests, platform based engagement logs, and a short self-reported engagement questionnaire.

1. Cognitive Retention Tests: A 20-item multiple-choice assessment aligned with the instructional content was used. Participants completed the assessment before the intervention (pre-test) and immediately after completing the learning module (post-test).
2. Engagement Analytics: The virtual classroom platform automatically captured data, including minutes spent on tasks, number of completed activities, attempts on gamified challenges, and participation in interactive elements such as badges, points, and leaderboards.
3. Engagement Questionnaire: A short five-item Likert-scale instrument assessed students' perceived engagement and focus during the lesson. The questionnaire was validated by subject-matter experts prior to use to ensure clarity and relevance.

6.3 Inclusion and Exclusion Criteria

Inclusion Criteria:

- Students enrolled in a virtual class during the semester of data collection.
- Participants aged 16 years or older.
- Individuals with access to a stable internet connection and capable of completing online assessments.
- Participants who provided informed consent.

Exclusion Criteria:

- Students who did not complete both pre-test and post-test assessments.
- Participants with documented learning disabilities that could influence cognitive-processing outcomes, unless they received standardized accommodations.
- Individuals who withdrew from the study or declined to allow their engagement data to be analyzed.

6.4 Ethical Considerations

The institutional review board gave ethical approval to the study before the data was collected. The participants were notified about the purpose of the study, that their participation was voluntary, and that they were free to drop out whenever they wanted without any penalty to their academics. To avoid the disclosure of the personal information, all the data were anonymized with unique identifiers. The analytics that was gathered on the platform was solely invested in research and was stored in encrypted files. There were no incentives given to prevent undue influence. The research was conducted on the basis of the generally accepted ethical standards of confidentiality, openness and autonomy of participants.

7. Results and Discussion

7.1 Results:

7.1.1 Descriptive Statistics

A total of 120 undergraduate students participated in the study:

- Gamified Learning Group (n = 60)
- Traditional Virtual Classroom Group (n = 60)

Cognitive retention was assessed through a post-test and a follow-up delayed test administered two weeks later. Engagement was measured using a validated Student Engagement Scale (SES) scored from 1–5.

Table 1. Descriptive Statistics for Engagement and Retention Scores

Variable	Group	Mean	SD	Min	Max
Engagement Score (SES)	Gamified	4.28	0.41	3.40	4.90
Engagement Score (SES)	Traditional	3.11	0.52	2.10	4.20
Immediate Post-test Score	Gamified	82.35	8.12	65	96
Immediate Post-test Score	Traditional	73.12	9.54	58	90
Delayed Test Score	Gamified	78.84	7.96	61	94
Delayed Test Score	Traditional	68.47	10.13	52	88

The descriptive results indicate consistently higher scores in the gamified group across all indicators.

7.1.2 Inferential Statistics

Comparison of Engagement Levels

An independent-samples t-test showed significant differences in engagement between the two groups:

Table 2. Independent Samples t-Test for Engagement

Variable	t	df	p-value	Mean Difference
Engagement Score	14.52	118	< .001	1.17

Students in the gamified classroom reported significantly higher engagement ($p < .001$).

Cognitive Retention: Immediate Post-Test

Table 3. Independent Samples t-Test for Immediate Post-Test

Variable	t	df	p-value	Mean Difference
Immediate Post-test Score	5.61	118	< .001	9.23

Gamified learning contributed to significantly improved immediate recall of lesson content.

Cognitive Retention: Delayed Test

Table 4. Independent Samples t-Test for Delayed Retention

Variable	t	df	p-value	Mean Difference
Delayed Test Score	6.07	118	< .001	10.37

The gamified group not only performed better immediately but also showed stronger long-term retention.

Correlation Analysis

Pearson correlation coefficients were calculated to examine the relationship between engagement and retention.

Table 5. Correlation Between Engagement and Retention Scores

Variables	r	p-value	Interpretation
Engagement × Immediate Retention	.62	< .001	Strong positive relationship
Engagement × Delayed Retention	.55	< .001	Moderate positive relationship

Higher engagement in the gamified environment was associated with improved memory retention.

7.2 Discussion

The results indicate that gamified learning can greatly boost student interactive and informative retention within the virtual classes. Those punctuated with the elements of game-based learning (like points, badges, challenge levels, and progression feedback) reported significantly better active participation structures with regard to game-based learning than those of the traditional online lessons.

The interaction ratings of the gamified team outdid those of the traditional team by over a full scale. This is a significant difference that shows that even in completely online environments, the elements of the game can sustain attention, curiosity, and engagement.

These gains were reflected in cognitive performance. Directly after the test, the findings reveal that students in the gamified group were more successful in remembering materials immediately after the lesson. More to the point, the fact that the test results were delayed showed that the benefits were long-term. Increased delayed retention scores reflect gamified learning, which is believed to have increased encoding and reinforced memory pathways, possibly as a result of repetition, feed-back, and motivational stimuli built-in through the gamified structure.

This interpretation is reinforced by the correlation analysis. The engagement was found to be closely correlated with short-term and long-term retention. This implies that the more engaged students were in the lesson, the better they learnt and remembered the lesson.

On the whole, the findings confirm the thesis that gamification activities can become a useful teaching approach in online classes to improve motivation and long-term learning outcomes. In the context of educators that are going to work online, incorporation of the elements of games could be useful to facilitate the gaps between attention and engagement that are frequently noticed in the online learning systems.

8. Limitations of the study

The current gamified learning and cognitive retention in the virtual classes study is limited in several aspects which can affect the way the results are interpreted. The sample size used was relatively limited and confined to one academic environment thus limiting the extension of the findings to larger groups of students or students in different learning institutions. Moreover, the research also placed a lot of confidence on the self-reported engagement measures that might have been influenced by response bias or might have been influenced by subjective perceptions of the students and not objective behavioural outcome. The intervention period was also short, and thus, the long-term retention or an extended engagement in terms of online learning could not be studied. More so, differences in the pre-existing knowledge of digital platforms, gaming aspects, and virtual educational resources among students might have created discrepancies in the interaction of the participants with the gamified activities. Finally, the third group of factors was out of control, including internet connectivity, distractions in the learning environment, and personal motivation, which could affect the level of engagement and cognitive performance. The limitations indicate that any future study has to include larger and more diversified samples, mixed-method data, and have a longer study period to better represent the results of long-term learning.

9. Future Scope

Further studies of gamified learning and cognitive retention in online classrooms will be able to progress in a number of ways. Firstly, research might be done into the long-term consequences of gamification by monitoring the performance and retention of learners over the long-term academic duration as opposed to short-term observations. This would give more credible information on whether the gamified strategies have long-lasting cognitive enhancement or their impacts are exhausted after the novelty wears off.

As well, it is possible to consider the personalized application of gamification in the future of work. Since students vary in their motivation levels, the learning flow, and mental requirements, individual-specific elements of the adaptive game can lead to better engagement results. Research into the effect of such personalized systems on cognitive retention can also inform teachers to create more inclusive online education.

The next possible line of research is investigating the connection between gamification and new technologies, artificial intelligence-based learning platforms/VR, VR, and AR. Such technologies can increase involvement and engagement and provide new opportunities to increase memory capacity and engagement. Comparing advantages of traditional gamified modules with VR-based or AR-based ones may allow discovering which types of learning are the most effective with the learners of various groups.

More studies might also examine the cultural, demographic and subject-specific differences that underlie the reactions of students to gamified tools. Age, academic discipline, and pre-existing experience in digital learning are some of the factors that can determine the perception and benefit of gamified elements on students. The generalizability of findings would be enhanced by carrying out cross-disciplinary and cross-cultural studies.

Finally, exploring teacher readiness and instructional design skills presents another promising area. Understanding how educators' training, attitudes, and design capabilities affect the successful implementation of gamification can support the development of more effective professional development models.

Overall, the future scope of this research lies in deeper longitudinal evaluation, personalized gamification, integration with advanced technologies, broader demographic analysis, and enhanced instructor-focused studies. These avenues can collectively contribute to more engaging, evidence-based, and cognitively effective virtual learning ecosystems.

10. Conclusion

To find out how the gamified learning affects the student engagement and cognitive retention in the virtual classrooms, this research study was developed, and the results do not fail to demonstrate the significant role that the game-based components could be playing in the process of creating an effective online learning experience. Students who were exposed to gamified activities showed greater levels of sustained attention, involvement, and desire to complete tasks than the ones in non-gamified settings did. What was more important was that the use of points, challenges, and instant feedback seemed to help in more processing of information, which had led to better recall and conceptualization of information upon the learning sessions.

The findings indicate that gamification is not merely an act of making lessons accessible and entertaining, but an organized motivational system that helps students to review materials, put ideas to practice, and keep track of their own advancement. This interaction and self-regulation combination promotes better cognitive links and mitigates against some of the most common disadvantages of virtual learning; distractibility and the lack of interaction. Nevertheless, the research also proves that gamification design should be purposeful because the ill-integrated elements may overload students or redirect their attention toward the learning goals instead of learning.

Although the article is promising findings, additional studies involving more and more diverse students are necessary to gain knowledge about long-term outcomes and the effects of the various forms of game mechanics. It may be also

possible to consider how individual variations (learning styles, age, previous exposure to digital games) may affect reactions to gamified teaching in future research. Altogether, the results can confirm that gamification could be a useful instrument in enhancing engagement and cognitive memory in contemporary online classrooms when done wisely and creatively.

References

1. Baah, C., Govender, I., & Subramaniam, P. R. (2024). Enhancing learning engagement: A study on gamification's influence on motivation and cognitive load. *Education Sciences*, 14(10), 1115.
2. Chang, C.-C., Liang, J.-C., & Lee, M.-H. (2018). Effects of digital game-based learning on achievement, flow, and cognitive load. * *Australasian Journal of Educational Technology**, 34(5), 1–17.
3. Cruz, C. S., et al. (2019). An empirical study of a gamified learning application: Motivation, achievement and inclusion. *Proceedings of the ACM Conference on Learning at Scale*.
4. Deterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011). From game design elements to “gamefulness”: Defining gamification. *Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments*, 9–15.
5. Díaz, A. F. (2024). A meta-analysis on the effectiveness of gamification in education (2018–2022). *Review of Educational Research*, 94(3), 345–372.
6. Gee, J. P. (2003). *What video games have to teach us about learning and literacy* (updated ed.). Palgrave Macmillan.
7. Hamari, J., Koivisto, J., & Sarsa, H. (2014). Does gamification work? — A literature review of empirical studies on gamification. *Proceedings of the 47th Hawaii International Conference on System Sciences*, 3025–3034.
8. Kapp, K. M. (2012). *The gamification of learning and instruction: Game-based methods and strategies for training and education*. John Wiley & Sons.
9. Khoshnoodifar, M., et al. (2023). Effectiveness of gamification in enhancing learning and retention: A systematic review and meta-analysis. *International Journal of Educational Technology in Higher Education*, 20(1), Article 47.
10. Koivisto, J., & Hamari, J. (2019). The rise of motivational information systems: A review of gamification research. *International Journal of Human-Computer Studies*, 127, 1–27.
11. Ruiz, J. J. R., et al. (2024). Impact of gamification on school engagement: A systematic review. *Frontiers in Education*, 9, Article 1466926.
12. Sailer, M., & Homner, L. (2019). The gamification of learning: A meta-analysis. *Educational Psychology Review*, 31(2), 1–26. (meta-analysis synthesizing gamification effects on cognitive and motivational outcomes).
13. Smiderle, R., et al. (2019). Smart learning environments: Game elements, adaptive scaffolding and learner outcomes. *Smart Learning Environments*, 6(1), 12.
14. Sun, L., et al. (2024). Game-based features in intelligent learning environments: Impacts on student engagement and learning outcomes. *Interactive Learning Environments*, 32(7), 1500–1520.
15. Zhan, Z., & colleagues. (2022). The effectiveness of gamification in programming education: A systematic evaluation. *Computers & Education*, 178, 104398.